电动物流车运营存在五大性能缺陷
发布时间:2020-02-24 10:23:50
电动物流车运营存在五大性能缺陷
“总体来说,电动汽车的大量推广应用,车辆故障多发、电池衰减、零部件一致性差、慢充时间长,充电设施不全等各方面问题,电动物流车作为一种生产运输工具,更是如此。”
据介绍,目前市场上运营的电动物流车存在五大较为集中和突出的问题。可以说,这些技术和性能的问题不解决,将严重影响电动物流车的大规模运营。
一、绝缘趴窝。
据介绍,电动汽车内配置的电池属于高电压和高电流,对整车绝缘要求极高,整车零部件并串联后绝缘电阻应大于100-200KΩ。
“虽然这个指标已经很低,但是一到下雨天或者涉水时,电机电控、电池组、BMS、DC直流转换器、充电机等高压系统零部件的IP防护等级不达标,整车因为绝缘故障保护而趴窝的情况经常出现。”程波说道。
二、高温故障。
主要表现在大载荷和长坡道运行时导致高温,或者频繁充放电和夏季过热时产生高温,这种情况下车辆往往会动力性能降低,严重时车辆趴窝。
三、里程衰减。
电池容量衰减导致里程数量缩短,电池维护频次越来越高,这直接物流车运营维护的成本时间成本的上升。
四、低温时充电难,里程变短。
有些车辆直接表现出低温环境下不能进行充电,同时车辆的动力减弱,行驶里程缩短。
五、SOC估算不准,客户里程焦虑。
据介绍,不少物流配送企业对电动物流车最大的担忧在于剩余里程,而SOC是电动汽车剩余里程的最重要的参考指标。在实际的运营过程中,经常出现SOC显示剩余电量还比较多,但实际电池却没电的情况。
那么,出现上述问题的原因是什么,又该如何解决,有何好的建议?
第一,出现绝缘故障的原因主要是以下几个方面,动力驱动系统零部件进水或者箱内出现雨水凝露导致绝缘性能下降;动力系统零部件供应商为了降低成本,才用的箱体普遍不开模,采用的钣金折弯、焊接和尺寸等一致性难控制;另外为了达到防水等级IP67,大部分采用密封胶进行封箱,但往往涂胶工艺一致性差、抗老化和耐候型差,使用一段时间防水和密封性能不达标等等。
针对绝缘故障,可以通过投入模具,是零部件标准化一致性提高来提高。同时采用高防护性能的零部件,通过线束的布局合理,电池安全设计等,最后加强出厂的安全检测,尤其是涉水与淋雨试验中的绝缘检测。
第二,高温故障的原因主要是设计阶段对零部件的热分析不充分,电机过载时能力不足,导致小马拉大车;动力电池方面存在放电倍率低,内阻大,导致升温过快。或者整车零部件设计不合理不利于散热。
这种情况下,需要采用动力性能更高的电机和放电倍率更高的电池,同时对零部件的发热情况进行仿真分析,同时优化零部件布局和结构的设计。例如风冷系统中,将发热零部件的散热面与车辆运行方向平行有利于空气流动带走热量;对水冷系统而言,需要优化管路结构和流量。对电池包而言,则可通过优化内部模块布局,可以增加热管理系统等等。
第三,里程衰减和电池容量减少的问题也是电动汽车目前较为突出的问题,例如电芯循环寿命较低,高低温环境下电池循环寿命急剧衰减。或者电芯与电池模块间的自放电差异大,均衡电路精度与效率较低等等,例如短板效益。都会严重影响电动的性能与表现。
第四,低温环境下电动车故障有以下几点原因,一是低温下电池电压平台的降低,导致内阻增加和放电量减少和输出功率降低。目前大多数供应商因为考虑成本控制,多数没有采用热管理系统。
第五,影响SOC计算的因素包括电池容量衰减、电阻变化、一致性、环境温度、放电工况等等。
那么针对电池容量、续航里程和SOC的问题,则需要从以下几方面入手解决:一是选择循环寿命更高的电芯,常温下大于2000次,高温45度循环寿命要高于1200次;二是电芯放电倍率相对实际的应用要预留空间,同时放电容量也要预留余量避免满充满放。要选择自动化程度高的电芯和一致性高的电池配组,模块间的电压差要小于10mV,容量小于3%,内阻小于10%,自放电差异小于1%;更需要监测许多不同工况和温度下的电芯衰减数据,作为BMS侦测SOCde参考数值作为基数数据,提高SOC侦测的精度。
“总体来说,电动汽车的大量推广应用,车辆故障多发、电池衰减、零部件一致性差、慢充时间长,充电设施不全等各方面问题,电动物流车作为一种生产运输工具,更是如此。”
据介绍,目前市场上运营的电动物流车存在五大较为集中和突出的问题。可以说,这些技术和性能的问题不解决,将严重影响电动物流车的大规模运营。
一、绝缘趴窝。
据介绍,电动汽车内配置的电池属于高电压和高电流,对整车绝缘要求极高,整车零部件并串联后绝缘电阻应大于100-200KΩ。
“虽然这个指标已经很低,但是一到下雨天或者涉水时,电机电控、电池组、BMS、DC直流转换器、充电机等高压系统零部件的IP防护等级不达标,整车因为绝缘故障保护而趴窝的情况经常出现。”程波说道。
二、高温故障。
主要表现在大载荷和长坡道运行时导致高温,或者频繁充放电和夏季过热时产生高温,这种情况下车辆往往会动力性能降低,严重时车辆趴窝。
三、里程衰减。
电池容量衰减导致里程数量缩短,电池维护频次越来越高,这直接物流车运营维护的成本时间成本的上升。
四、低温时充电难,里程变短。
有些车辆直接表现出低温环境下不能进行充电,同时车辆的动力减弱,行驶里程缩短。
五、SOC估算不准,客户里程焦虑。
据介绍,不少物流配送企业对电动物流车最大的担忧在于剩余里程,而SOC是电动汽车剩余里程的最重要的参考指标。在实际的运营过程中,经常出现SOC显示剩余电量还比较多,但实际电池却没电的情况。
那么,出现上述问题的原因是什么,又该如何解决,有何好的建议?
第一,出现绝缘故障的原因主要是以下几个方面,动力驱动系统零部件进水或者箱内出现雨水凝露导致绝缘性能下降;动力系统零部件供应商为了降低成本,才用的箱体普遍不开模,采用的钣金折弯、焊接和尺寸等一致性难控制;另外为了达到防水等级IP67,大部分采用密封胶进行封箱,但往往涂胶工艺一致性差、抗老化和耐候型差,使用一段时间防水和密封性能不达标等等。
针对绝缘故障,可以通过投入模具,是零部件标准化一致性提高来提高。同时采用高防护性能的零部件,通过线束的布局合理,电池安全设计等,最后加强出厂的安全检测,尤其是涉水与淋雨试验中的绝缘检测。
第二,高温故障的原因主要是设计阶段对零部件的热分析不充分,电机过载时能力不足,导致小马拉大车;动力电池方面存在放电倍率低,内阻大,导致升温过快。或者整车零部件设计不合理不利于散热。
这种情况下,需要采用动力性能更高的电机和放电倍率更高的电池,同时对零部件的发热情况进行仿真分析,同时优化零部件布局和结构的设计。例如风冷系统中,将发热零部件的散热面与车辆运行方向平行有利于空气流动带走热量;对水冷系统而言,需要优化管路结构和流量。对电池包而言,则可通过优化内部模块布局,可以增加热管理系统等等。
第三,里程衰减和电池容量减少的问题也是电动汽车目前较为突出的问题,例如电芯循环寿命较低,高低温环境下电池循环寿命急剧衰减。或者电芯与电池模块间的自放电差异大,均衡电路精度与效率较低等等,例如短板效益。都会严重影响电动的性能与表现。
第四,低温环境下电动车故障有以下几点原因,一是低温下电池电压平台的降低,导致内阻增加和放电量减少和输出功率降低。目前大多数供应商因为考虑成本控制,多数没有采用热管理系统。
第五,影响SOC计算的因素包括电池容量衰减、电阻变化、一致性、环境温度、放电工况等等。
那么针对电池容量、续航里程和SOC的问题,则需要从以下几方面入手解决:一是选择循环寿命更高的电芯,常温下大于2000次,高温45度循环寿命要高于1200次;二是电芯放电倍率相对实际的应用要预留空间,同时放电容量也要预留余量避免满充满放。要选择自动化程度高的电芯和一致性高的电池配组,模块间的电压差要小于10mV,容量小于3%,内阻小于10%,自放电差异小于1%;更需要监测许多不同工况和温度下的电芯衰减数据,作为BMS侦测SOCde参考数值作为基数数据,提高SOC侦测的精度。
相关线路查询